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LETTER TO THE EDITOR

Hidden symmetry of the differential calculus on the
quantum matrix space

S Sinel’shchikov† and L Vaksman‡
Mathematics Department, Institute for Low Temperature Physics and Engineering, 47 Lenin
Avenue, 310164 Kharkov, Ukraine

Received 5 November 1996

Abstract. A standard bicovariant differential calculus on the quantum matrix space Mat(m, n)q
is considered. Our main result is proving that theUqs(glm × gln)-module differential algebra
�∗(Mat(m, n))q is in fact aUqsl(m + n)-module differential algebra.

1. This work solves a problem whose simple special case occurs in the construction of
a quantum unit ball ofCn (in the spirit of [10]). Within the framework of that theory,
the automorphism group of the ballSU(n, 1) ⊂ SL(n + 1) is essential. The problem
is that the Wess–Zumino differential calculus in quantumCn [11] seems at first glance
to be onlyUqsln-invariant. In that particular case the lostUqslm+n-symmetry can easily
be detected. The main result of this work is disclosing the hiddenUqsln-symmetry for
bicovariant differential calculus in the quantum matrix space Mat(m, n). (Note that for
n = 1 we have the case of a ball).

2. We start with recalling the definition of the Hopf algebraUqslN , N > 1, over the field
C(q) of rational functions of an indeterminateq [4, 5]. (We follow the notation of [3]).

For i, j ∈ {1, . . . , N − 1} let

aij =


2 i − j = 0

−1 |i − j | = 1

0 |i − j | > 1.

The algebraUqslN is defined by the generators{Ei, Fi, Ki, K−1
i } and the relations

KiKj = KjKi KiK
−1
i = K−1

i Ki = 1

KiEj = qaij EjKi KiFj = q−aij FjKi

EiFj − FjEi = δij (Ki − K−1
i )/(q − q−1)

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 |i − j | = 1

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0 |i − j | = 1

[Ei, Ej ] = [Fi, Fj ] = 0 |i − j | 6= 1.

† E-mail: sinelshchikov@ilt.kharkov.ua
‡ E-mail: vaksman@ilt.kharkov.ua

0305-4470/97/020023+04$19.50c© 1997 IOP Publishing Ltd L23



L24 Letter to the Editor

A comultiplication1, an antipodeS and a counitε are defined by

1Ei = Ei ⊗ 1 + Ki ⊗ Ei 1Fi = Fi ⊗ K−1
i + 1 ⊗ Fi

1Ki = Ki ⊗ Ki S(Ei) = −K−1
i Ei

S(Fi) = −FiKi S(Ki) = K−1
i

ε(Ei) = ε(Fi) = 0 ε(Ki) = 1.

3. Recall a description of a differential algebra�∗(Mat(m, n))q on a quantum matrix
space [2, 8].

Let i, j, i ′, j ′ ∈ {1, 2, . . . , m + n}, and

Ř
i ′j ′
ij =



q−1 i = j = i ′ = j ′

1 i ′ = j , j ′ = i and i 6= j

q−1 − q i = i ′, j = j ′ and i < j

0 otherwise.

�∗(Mat(m, n))q is given by the generators{tαa } and the relations∑
γ,δ

Ř
αβ

γ δ t
γ
a tδb =

∑
c,d

Řcd
abt

β

d tαc

∑
a′,b′,γ ′,δ′

Ř
αβ

γ ′δ′Ř
a′b′
ab t

γ ′
a′ dtδ

′
b′ = dtαa t

β

b

∑
a′,b′,γ ′,δ′

Ř
αβ

γ ′δ′Ř
a′b′
ab dt

γ ′
a′ dtδ

′
b′ = −dtαa dt

β

b

(a, b, c, d, a′, b′ ∈ {1, . . . , n}; α, β, γ, δ, γ ′, δ′ ∈ {1, . . . , m}).
Let us define a grading by deg(tαa ) = 0, deg(dtαa ) = 1. With that,C[Mat (m, n)]q =

�0(Mat(m, n)))q will stand for a subalgebra of elements with zero degree.

4. Let A be a Hopf algebra andF an algebra with unit and anA-module the same time.
F is said to be aA-module algebra [1] if the multiplicationm : F ⊗F → F is a morphism
of A-modules, and 1∈ F is an invariant (i.e.a(f1f2) = ∑

j a′
j f1 ⊗ a′′

j f2, a1 = ε(a)1 for
all a ∈ A; f1, f2 ∈ F , with 1(a) = ∑

j a′
j ⊗ a′′

j ).
An important example of anA-module algebra appears if one suppliesA∗ with the

structure of anA-module: 〈af, b〉 = 〈f, ba〉, a, b ∈ A, f ∈ A∗.

5. Our immediate goal is to furnishC[Mat (m, n)]q with a structure of aUqslm+n-module
algebra via an embeddingC[Mat (m, n)]q ↪→ (Uqslm+n)

∗.
Let {eij } be a standard basis in Mat(m + n) and {fij } the dual basis in Mat(m + n)∗.

Consider a natural representationπ of Uqslm+n:

π(Ei) = ei i+1 π(Fi) = ei+1 i π(Ki) = qeii + q−1ei+1 i+1 +
∑

j 6=i,i+1

ejj .

The matrix elementsuij = fijπ ∈ (Uqslm+n)
∗ of the natural representation may

be treated as ‘coordinates’ on the quantum groupSLm+n [4]. To construct ‘coordinate’
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functions on a big cell of the Grassmann manifold, we need the following elements of
C[Mat (m, n)]q :

x(j1, j2, . . . , jm) =
∑
w∈Sm

(−q)l(w)u1jw(1)
u2jw(2)

· · · umjw(m)
,

with 1 6 j1 < j2 < · · · < jm 6 m + n, and l(w) = card{(a, b)| a < b andw(a) > w(b)}
being the ‘length’ of a permutationw ∈ Sm.

Proposition 1. x(1, 2, . . . , m) is invertible in(Uqslm+n)
∗, and the map

tαa 7→ x(1, 2, . . . , m)−1x(1, . . . , ̂m + 1 − α, . . . , m, m + a)

can be extended up to an embedding

i : C[Mat (m, n)]q ↪→ (Uqslm+n)
∗.

(here thê sign indicates the item in a list that should be omitted).

Proposition 1 allows one to equipC[Mat (m, n)]q with the structure of aUqslm+n-module
algebra:

iξ tαa = ξitαa ξ ∈ Uqslm+n, a ∈ {1, . . . , n}, α ∈ {1, . . . , m}.

6. The main result of our work is the following theorem.

Theorem 1.�∗(Mat(m, n))q admits a unique structure of aUqslm+n-module algebra such
that the embedding

i : C[Mat (m, n)]q ↪→ �∗(Mat(m, n))q

and the differential

d : �∗(Mat(m, n))q → �∗(Mat(m, n))q

are the morphisms ofUqslm+n-modules.

Remark 1. The bicovariance of the differential calculus on the quantum matrix space
allows one to equip the algebra�∗(Mat(m, n))q with a structure ofUqs(glm × gln)-
module, which is compatible with multiplication in�∗(Mat(m, n))q and differentiald.
Theorem 1 implies that�∗(Mat(m, n))q possess an additional hidden symmetry, since
Uqslm+n % Uqs(glm × gln).

Remark 2. Let q0 ∈ C andq0 is not a root of unity. It follows from the explicit formulae
for Emtαa , Fmtαa , K±1

m tαa , a ∈ {1, . . . , n}, α ∈ {1, . . . , m}, that the ‘specialization’
�∗(Mat(m, n))q0 is a Uq0slm+n-module algebra.

7. Supply the algebraUqslm+n with a grading as follows:

deg(Ki) = deg(Ei) = deg(Fi) = 0 for i 6= m

deg(Km) = 0 deg(Em) = 1 deg(Fm) = 0.

The proofs of proposition 1 and theorem 1 reduce to the construction of gradedUqslm+n-
modules which are dual respectively to the modules of functions�0(Mat(m, n))q and
that of 1-forms�1(Mat(m, n))q . The dual modules are defined by their generators and
correlations. While proving the completeness of the correlation list, we implement the
‘limit specialization’ q0 = 1 (see [3, p 416]).
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The passage from the order-one differential calculus�0(Mat(m, n))q
d→

�1(Mat(m, n))q to �∗(Mat(m, n))q is done via a universal argument described in a paper
by Maltsiniotis [9]. This argument does not breakUqslm+n-symmetry.

8. Our approach to the construction of the order-one differential calculus is completely
analogous to that of Drinfel’d [4], used initially to produce the algebra of functions on a
quantum group by means of a universal enveloping algebra.

9. The space of matrices is the simplest example of an irreducible prehomogeneous vector
space of parabolic type [7]. Such a space can also be associated with a pair constituted by
a Dynkin diagram of a simple Lie algebraG and a distinguished vertex of this diagram.
Our method can work as an efficient tool for producingUqG-invariant differential calculi
on the above prehomogeneous vector spaces.

Note thatUqG-module algebras of polynomials on quantum prehomogeneous spaces of
parabolic type were considered in a recent work by Kebe [6].
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