Hidden symmetry of the differential calculus on the quantum matrix space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L23
(http://iopscience.iop.org/0305-4470/30/2/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Hidden symmetry of the differential calculus on the quantum matrix space 

S Sinel'shchikov $\dagger$ and L Vaksman $\ddagger$<br>Mathematics Department, Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 310164 Kharkov, Ukraine

Received 5 November 1996


#### Abstract

A standard bicovariant differential calculus on the quantum matrix space $\operatorname{Mat}(m, n)_{q}$ is considered. Our main result is proving that the $U_{q} \mathfrak{s}\left(\mathfrak{g l}_{m} \times \mathfrak{g l}_{n}\right)$-module differential algebra $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ is in fact a $U_{q} \mathfrak{s l}(m+n)$-module differential algebra.


1. This work solves a problem whose simple special case occurs in the construction of a quantum unit ball of $\mathbb{C}^{n}$ (in the spirit of [10]). Within the framework of that theory, the automorphism group of the ball $S U(n, 1) \subset S L(n+1)$ is essential. The problem is that the Wess-Zumino differential calculus in quantum $\mathbb{C}^{n}$ [11] seems at first glance to be only $U_{q} \mathfrak{s l}_{n}$-invariant. In that particular case the lost $U_{q} \mathfrak{s l}_{m+n}$-symmetry can easily be detected. The main result of this work is disclosing the hidden $U_{q} \mathfrak{S l}_{n}$-symmetry for bicovariant differential calculus in the quantum matrix space Mat $(m, n)$. (Note that for $n=1$ we have the case of a ball).
2. We start with recalling the definition of the Hopf algebra $U_{q} \mathfrak{s l}_{N}, N>1$, over the field $\mathbb{C}(q)$ of rational functions of an indeterminate $q[4,5]$. (We follow the notation of [3]).

For $i, j \in\{1, \ldots, N-1\}$ let

$$
a_{i j}= \begin{cases}2 & i-j=0 \\ -1 & |i-j|=1 \\ 0 & |i-j|>1\end{cases}
$$

The algebra $U_{q} \mathfrak{s l}_{N}$ is defined by the generators $\left\{E_{i}, F_{i}, K_{i}, K_{i}^{-1}\right\}$ and the relations

$$
\begin{array}{lll}
K_{i} K_{j}=K_{j} K_{i} & K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1 \\
K_{i} E_{j}=q^{a_{i j}} E_{j} K_{i} \quad K_{i} F_{j}=q^{-a_{i j}} F_{j} K_{i} & \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left(K_{i}-K_{i}^{-1}\right) /\left(q-q^{-1}\right) & \\
E_{i}^{2} E_{j}-\left(q+q^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 & |i-j|=1 \\
F_{i}^{2} F_{j}-\left(q+q^{-1}\right) F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 & |i-j|=1 \\
{\left[E_{i}, E_{j}\right]=\left[F_{i}, F_{j}\right]=0 \quad|i-j| \neq 1 .} &
\end{array}
$$

[^0]A comultiplication $\Delta$, an antipode $S$ and a counit $\varepsilon$ are defined by

$$
\begin{aligned}
& \Delta E_{i}=E_{i} \otimes 1+K_{i} \otimes E_{i} \quad \Delta F_{i}=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i} \\
& \Delta K_{i}=K_{i} \otimes K_{i} \quad S\left(E_{i}\right)=-K_{i}^{-1} E_{i} \\
& S\left(F_{i}\right)=-F_{i} K_{i} \quad S\left(K_{i}\right)=K_{i}^{-1} \\
& \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0 \quad \varepsilon\left(K_{i}\right)=1 .
\end{aligned}
$$

3. Recall a description of a differential algebra $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ on a quantum matrix space [2, 8].

Let $i, j, i^{\prime}, j^{\prime} \in\{1,2, \ldots, m+n\}$, and

$$
\check{R}_{i j}^{i^{\prime} j^{\prime}}= \begin{cases}q^{-1} & i=j=i^{\prime}=j^{\prime} \\ 1 & i^{\prime}=j, j^{\prime}=i \text { and } i \neq j \\ q^{-1}-q & i=i^{\prime}, j=j^{\prime} \text { and } i<j \\ 0 & \text { otherwise } .\end{cases}
$$

$\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ is given by the generators $\left\{t_{a}^{\alpha}\right\}$ and the relations

$$
\begin{aligned}
& \sum_{\gamma, \delta} \check{R}_{\gamma \delta}^{\alpha \beta} t_{a}^{\gamma} t_{b}^{\delta}=\sum_{c, d} \check{R}_{a b}^{c d} t_{d}^{\beta} t_{c}^{\alpha} \\
& \sum_{a^{\prime}, b^{\prime}, \gamma^{\prime}, \delta^{\prime}} \check{R}_{\gamma^{\prime} \delta^{\prime}}^{\alpha \beta} \check{R}_{a b}^{a^{\prime} b^{\prime}} t_{a^{\prime}}^{\gamma^{\prime}} d t_{b^{\prime}}^{\delta^{\prime}}=d t_{a}^{\alpha} t_{b}^{\beta} \\
& \sum_{a^{\prime}, b^{\prime}, \gamma^{\prime}, \delta^{\prime}} \check{R}_{\gamma^{\prime} \delta^{\prime}}^{\alpha \beta} \check{R}_{a b}^{a^{\prime} b^{\prime}} d t_{a^{\prime}}^{\gamma^{\prime}} d t_{b^{\prime}}^{\delta^{\prime}}=-d t_{a}^{\alpha} d t_{b}^{\beta}
\end{aligned}
$$

$\left(a, b, c, d, a^{\prime}, b^{\prime} \in\{1, \ldots, n\} ; \alpha, \beta, \gamma, \delta, \gamma^{\prime}, \delta^{\prime} \in\{1, \ldots, m\}\right)$.
Let us define a grading by $\operatorname{deg}\left(t_{a}^{\alpha}\right)=0, \operatorname{deg}\left(d t_{a}^{\alpha}\right)=1$. With that, $\mathbb{C}[\operatorname{Mat}(m, n)]_{q}=$ $\left.\Omega^{0}(\operatorname{Mat}(m, n))\right)_{q}$ will stand for a subalgebra of elements with zero degree.
4. Let $A$ be a Hopf algebra and $F$ an algebra with unit and an $A$-module the same time. $F$ is said to be a $A$-module algebra [1] if the multiplication $m: F \otimes F \rightarrow F$ is a morphism of $A$-modules, and $1 \in F$ is an invariant (i.e. $a\left(f_{1} f_{2}\right)=\sum_{j} a_{j}^{\prime} f_{1} \otimes a_{j}^{\prime \prime} f_{2}, a 1=\varepsilon(a) 1$ for all $a \in A ; f_{1}, f_{2} \in F$, with $\left.\Delta(a)=\sum_{j} a_{j}^{\prime} \otimes a_{j}^{\prime \prime}\right)$.

An important example of an $A$-module algebra appears if one supplies $A^{*}$ with the structure of an $A$-module: $\langle a f, b\rangle=\langle f, b a\rangle, a, b \in A, f \in A^{*}$.
5. Our immediate goal is to furnish $\mathbb{C}[\operatorname{Mat}(m, n)]_{q}$ with a structure of a $U_{q} \mathfrak{s l}_{m+n}$-module algebra via an embedding $\mathbb{C}[\operatorname{Mat}(m, n)]_{q} \hookrightarrow\left(U_{q} \mathfrak{s l}_{m+n}\right)^{*}$.

Let $\left\{e_{i j}\right\}$ be a standard basis in Mat $(m+n)$ and $\left\{f_{i j}\right\}$ the dual basis in Mat $(m+n)^{*}$. Consider a natural representation $\pi$ of $U_{q} \mathfrak{S l}_{m+n}$ :

$$
\pi\left(E_{i}\right)=e_{i i+1} \quad \pi\left(F_{i}\right)=e_{i+1 i} \quad \pi\left(K_{i}\right)=q e_{i i}+q^{-1} e_{i+1 i+1}+\sum_{j \neq i, i+1} e_{j j} .
$$

The matrix elements $u_{i j}=f_{i j} \pi \in\left(U_{q} \mathfrak{s l}_{m+n}\right)^{*}$ of the natural representation may be treated as 'coordinates' on the quantum group $S L_{m+n}$ [4]. To construct 'coordinate'
functions on a big cell of the Grassmann manifold, we need the following elements of $\mathbb{C}[\operatorname{Mat}(m, n)]_{q}$ :

$$
x\left(j_{1}, j_{2}, \ldots, j_{m}\right)=\sum_{w \in S_{m}}(-q)^{l(w)} u_{1 j_{w(1)}} u_{2 j_{w(2)}} \cdots u_{m j_{w(m)}}
$$

with $1 \leqslant j_{1}<j_{2}<\cdots<j_{m} \leqslant m+n$, and $l(w)=\operatorname{card}\{(a, b) \mid a<b$ and $w(a)>w(b)\}$ being the 'length' of a permutation $w \in S_{m}$.
Proposition 1. $x(1,2, \ldots, m)$ is invertible in $\left(U_{q} \mathfrak{s l}_{m+n}\right)^{*}$, and the map

$$
t_{a}^{\alpha} \mapsto x(1,2, \ldots, m)^{-1} x(1, \ldots, m \widehat{+1-\alpha}, \ldots, m, m+a)
$$

can be extended up to an embedding

$$
i: \mathbb{C}[\operatorname{Mat}(m, n)]_{q} \hookrightarrow\left(U_{q} \mathfrak{s l}_{m+n}\right)^{*} .
$$

(here the ${ }^{\wedge}$ sign indicates the item in a list that should be omitted).
Proposition 1 allows one to equip $\mathbb{C}[\operatorname{Mat}(m, n)]_{q}$ with the structure of a $U_{q} \mathfrak{s l}_{m+n}$-module algebra:

$$
i \xi t_{a}^{\alpha}=\xi i t_{a}^{\alpha} \quad \xi \in U_{q} \mathfrak{s l}_{m+n}, a \in\{1, \ldots, n\}, \alpha \in\{1, \ldots, m\}
$$

6. The main result of our work is the following theorem.

Theorem 1. $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ admits a unique structure of a $U_{q} \mathfrak{s l}_{m+n}$-module algebra such that the embedding

$$
i: \mathbb{C}[\operatorname{Mat}(m, n)]_{q} \hookrightarrow \Omega^{*}(\operatorname{Mat}(m, n))_{q}
$$

and the differential

$$
d: \Omega^{*}(\operatorname{Mat}(m, n))_{q} \rightarrow \Omega^{*}(\operatorname{Mat}(m, n))_{q}
$$

are the morphisms of $U_{q} \mathfrak{s l}_{m+n}$-modules.
Remark 1. The bicovariance of the differential calculus on the quantum matrix space allows one to equip the algebra $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ with a structure of $U_{q} \mathfrak{s}\left(\mathfrak{g l}_{m} \times \mathfrak{g l}_{n}\right)$ module, which is compatible with multiplication in $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ and differential $d$. Theorem 1 implies that $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ possess an additional hidden symmetry, since $U_{q} \mathfrak{s l}_{m+n} \supsetneqq U_{q} \mathfrak{s}\left(\mathfrak{g l}_{m} \times \mathfrak{g l}_{n}\right)$.
Remark 2. Let $q_{0} \in \mathbb{C}$ and $q_{0}$ is not a root of unity. It follows from the explicit formulae for $E_{m} t_{a}^{\alpha}, \quad F_{m} t_{a}^{\alpha}, K_{m}^{ \pm 1} t_{a}^{\alpha}, \quad a \in\{1, \ldots, n\}, \quad \alpha \in\{1, \ldots, m\}$, that the 'specialization' $\Omega^{*}(\operatorname{Mat}(m, n))_{q_{0}}$ is a $U_{q_{0}} \mathfrak{s l}_{m+n}$-module algebra.
7. Supply the algebra $U_{q} \mathfrak{s l}_{m+n}$ with a grading as follows:

$$
\begin{array}{lll}
\operatorname{deg}\left(K_{i}\right)=\operatorname{deg}\left(E_{i}\right)=\operatorname{deg}\left(F_{i}\right)=0 & \text { for } i \neq m \\
\operatorname{deg}\left(K_{m}\right)=0 & \operatorname{deg}\left(E_{m}\right)=1 & \operatorname{deg}\left(F_{m}\right)=0
\end{array}
$$

The proofs of proposition 1 and theorem 1 reduce to the construction of graded $U_{q} \mathfrak{s l}_{m+n^{-}}$ modules which are dual respectively to the modules of functions $\Omega^{0}(\operatorname{Mat}(m, n))_{q}$ and that of 1 -forms $\Omega^{1}(\operatorname{Mat}(m, n))_{q}$. The dual modules are defined by their generators and correlations. While proving the completeness of the correlation list, we implement the 'limit specialization' $q_{0}=1$ (see [3, p 416]).

The passage from the order-one differential calculus $\Omega^{0}(\operatorname{Mat}(m, n))_{q} \xrightarrow{d}$ $\Omega^{1}(\operatorname{Mat}(m, n))_{q}$ to $\Omega^{*}(\operatorname{Mat}(m, n))_{q}$ is done via a universal argument described in a paper by Maltsiniotis [9]. This argument does not break $U_{q} \mathfrak{s l}_{m+n}$-symmetry.
8. Our approach to the construction of the order-one differential calculus is completely analogous to that of Drinfel'd [4], used initially to produce the algebra of functions on a quantum group by means of a universal enveloping algebra.
9. The space of matrices is the simplest example of an irreducible prehomogeneous vector space of parabolic type [7]. Such a space can also be associated with a pair constituted by a Dynkin diagram of a simple Lie algebra $\mathcal{G}$ and a distinguished vertex of this diagram. Our method can work as an efficient tool for producing $U_{q} \mathcal{G}$-invariant differential calculi on the above prehomogeneous vector spaces.

Note that $U_{q} \mathcal{G}$-module algebras of polynomials on quantum prehomogeneous spaces of parabolic type were considered in a recent work by Kebe [6].

SS acknowledges partial financial support under ISF grant U2B200. LV acknowledges partial financial support under ISF grant U21200 and INTAS grant 4720. The authors are grateful to V Akulov and G Maltsiniotis for a helpful discussion concerning the results. The authors would also like to express their gratitude to Professor A Boutet de Monvel at University Paris VII for warm hospitality during the work on this letter.

## References

[1] Abe E 1980 Hopf Algebras (Cambridge Tracts in Mathematics 74) (Cambridge: Cambridge University Press)
[2] Chari V and Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambridge University Press)
[3] De Concini C and Kac V G 1990 Representations of quantum groups at roots of 1 Operator Algebras, Unitary representations, Enveloping Algebras and Invariant Theory ed A Connes, M Duflo, A Joseph and R Rentschler (Basel: Birkhäuser) pp 471-506
[4] Drinfel'd V G 1987 Quantum groups Proc. Int. Congress of Mathematicians (Berkeley, 1986) ed A M Gleason (Providence, RI: American Mathematical Society) pp 798-820
[5] Jimbo M 1986 Quantum $R$-matrix related to the generalized Toda system: an algebraic approach Field Theory, Quantum Gravity and Strings (Lecture Notes in Physics 246) ed H J de Vega and N Sanchez (Berlin: Springer) pp 335-61
[6] Kebe M S 1996 O-algèbres quantiques CR Acad. Sci. Paris Série I 322 1-4
[7] Kimura T 1986 A classification theory of prehomogeneous vector spaces Proc. Symp. on Analysis of Homogeneous Spaces and Representations of Lie Groups (Kyoto, Hiroshima, 1986) ed K Okamoto and T Oshima Adv. Stud. Pure Math. 14 223-56
[8] Maltsiniotis G 1990 Groupes quantiques et structures différentielles CR Acad. Sci. Paris Série I 311 831-4
[9] Maltsiniotis G 1993 Le langage des espaces et des groupes quantiques Commun. Math. Phys. 151 275-302
[10] Rudin W 1980 Function Theory in the Unit Ball of $\mathbb{C}^{n}$ (Berlin: Springer)
[11] Wess J and Zumino B 1991 Covariant differential calculus on the quantum hyperplane Nucl. Phys. B Proc. Suppl. B 18 302-12


[^0]:    $\dagger$ E-mail: sinelshchikov@ilt.kharkov.ua
    $\ddagger$ E-mail: vaksman@ilt.kharkov.ua

